(m, q)-ISOMETRIES ON METRIC SPACES

We show that there exist a linear m-isometry on a Hilbert space which is not continuous, and a continuous m-isometry on a Hilbert space which is not affine. Further we define (m, q)-isometries on metric spaces and prove their basic properties.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of operator theory 2014-12, Vol.72 (2), p.313-328
Hauptverfasser: Bermudez, Teresa, Martinon, Antonio, Muller, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 328
container_issue 2
container_start_page 313
container_title Journal of operator theory
container_volume 72
creator Bermudez, Teresa
Martinon, Antonio
Muller, Vladimir
description We show that there exist a linear m-isometry on a Hilbert space which is not continuous, and a continuous m-isometry on a Hilbert space which is not affine. Further we define (m, q)-isometries on metric spaces and prove their basic properties.
doi_str_mv 10.7900/jot.2013jan29.1996
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_7900_jot_2013jan29_1996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24718080</jstor_id><sourcerecordid>24718080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-ae805913195a827e8cbcbd4e5ec1b8fe29267c46597a5b8a3634eee2b218d6fd3</originalsourceid><addsrcrecordid>eNo9z8FLwzAUx_EgCtbpPyAIxZPCUt9L0iY5jlJnYVqx8xzSNAWLs9r0sv_ezclO712-P_gQco2QSA3w0A9TwgB5b7-YTlDr7IREqARSKYU4JRFwqakAJs7JRQg9AEeQLCK3d5t5_HNPy7p6LtZvZVHH1Uv89-Zx_brIi_qSnHX2M_ir_zsj74_FOn-iq2pZ5osVdRz5RK1XkGrkqFOrmPTKNa5phU-9w0Z1nmmWSSeyVEubNsryjAvvPWsYqjbrWj4j7LDrxiGE0Xfme_zY2HFrEMxeaXZKc1SavXIX3RyiPkzDeCyYkKhAAf8FH1RMbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>(m, q)-ISOMETRIES ON METRIC SPACES</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bermudez, Teresa ; Martinon, Antonio ; Muller, Vladimir</creator><creatorcontrib>Bermudez, Teresa ; Martinon, Antonio ; Muller, Vladimir</creatorcontrib><description>We show that there exist a linear m-isometry on a Hilbert space which is not continuous, and a continuous m-isometry on a Hilbert space which is not affine. Further we define (m, q)-isometries on metric spaces and prove their basic properties.</description><identifier>ISSN: 0379-4024</identifier><identifier>EISSN: 1841-7744</identifier><identifier>DOI: 10.7900/jot.2013jan29.1996</identifier><language>eng</language><publisher>Theta Foundation</publisher><subject>Banach space ; Differential equations ; Hilbert spaces ; Integers ; Linear algebra ; Linear transformations ; Mathematical theorems ; Normed spaces ; Operator theory ; Real numbers</subject><ispartof>Journal of operator theory, 2014-12, Vol.72 (2), p.313-328</ispartof><rights>Copyright © 2014 Theta</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-ae805913195a827e8cbcbd4e5ec1b8fe29267c46597a5b8a3634eee2b218d6fd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24718080$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24718080$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Bermudez, Teresa</creatorcontrib><creatorcontrib>Martinon, Antonio</creatorcontrib><creatorcontrib>Muller, Vladimir</creatorcontrib><title>(m, q)-ISOMETRIES ON METRIC SPACES</title><title>Journal of operator theory</title><description>We show that there exist a linear m-isometry on a Hilbert space which is not continuous, and a continuous m-isometry on a Hilbert space which is not affine. Further we define (m, q)-isometries on metric spaces and prove their basic properties.</description><subject>Banach space</subject><subject>Differential equations</subject><subject>Hilbert spaces</subject><subject>Integers</subject><subject>Linear algebra</subject><subject>Linear transformations</subject><subject>Mathematical theorems</subject><subject>Normed spaces</subject><subject>Operator theory</subject><subject>Real numbers</subject><issn>0379-4024</issn><issn>1841-7744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9z8FLwzAUx_EgCtbpPyAIxZPCUt9L0iY5jlJnYVqx8xzSNAWLs9r0sv_ezclO712-P_gQco2QSA3w0A9TwgB5b7-YTlDr7IREqARSKYU4JRFwqakAJs7JRQg9AEeQLCK3d5t5_HNPy7p6LtZvZVHH1Uv89-Zx_brIi_qSnHX2M_ir_zsj74_FOn-iq2pZ5osVdRz5RK1XkGrkqFOrmPTKNa5phU-9w0Z1nmmWSSeyVEubNsryjAvvPWsYqjbrWj4j7LDrxiGE0Xfme_zY2HFrEMxeaXZKc1SavXIX3RyiPkzDeCyYkKhAAf8FH1RMbA</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Bermudez, Teresa</creator><creator>Martinon, Antonio</creator><creator>Muller, Vladimir</creator><general>Theta Foundation</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201412</creationdate><title>(m, q)-ISOMETRIES ON METRIC SPACES</title><author>Bermudez, Teresa ; Martinon, Antonio ; Muller, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-ae805913195a827e8cbcbd4e5ec1b8fe29267c46597a5b8a3634eee2b218d6fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Banach space</topic><topic>Differential equations</topic><topic>Hilbert spaces</topic><topic>Integers</topic><topic>Linear algebra</topic><topic>Linear transformations</topic><topic>Mathematical theorems</topic><topic>Normed spaces</topic><topic>Operator theory</topic><topic>Real numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bermudez, Teresa</creatorcontrib><creatorcontrib>Martinon, Antonio</creatorcontrib><creatorcontrib>Muller, Vladimir</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bermudez, Teresa</au><au>Martinon, Antonio</au><au>Muller, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>(m, q)-ISOMETRIES ON METRIC SPACES</atitle><jtitle>Journal of operator theory</jtitle><date>2014-12</date><risdate>2014</risdate><volume>72</volume><issue>2</issue><spage>313</spage><epage>328</epage><pages>313-328</pages><issn>0379-4024</issn><eissn>1841-7744</eissn><abstract>We show that there exist a linear m-isometry on a Hilbert space which is not continuous, and a continuous m-isometry on a Hilbert space which is not affine. Further we define (m, q)-isometries on metric spaces and prove their basic properties.</abstract><pub>Theta Foundation</pub><doi>10.7900/jot.2013jan29.1996</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0379-4024
ispartof Journal of operator theory, 2014-12, Vol.72 (2), p.313-328
issn 0379-4024
1841-7744
language eng
recordid cdi_crossref_primary_10_7900_jot_2013jan29_1996
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals
subjects Banach space
Differential equations
Hilbert spaces
Integers
Linear algebra
Linear transformations
Mathematical theorems
Normed spaces
Operator theory
Real numbers
title (m, q)-ISOMETRIES ON METRIC SPACES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=(m,%20q)-ISOMETRIES%20ON%20METRIC%20SPACES&rft.jtitle=Journal%20of%20operator%20theory&rft.au=Bermudez,%20Teresa&rft.date=2014-12&rft.volume=72&rft.issue=2&rft.spage=313&rft.epage=328&rft.pages=313-328&rft.issn=0379-4024&rft.eissn=1841-7744&rft_id=info:doi/10.7900/jot.2013jan29.1996&rft_dat=%3Cjstor_cross%3E24718080%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24718080&rfr_iscdi=true