(m, q)-ISOMETRIES ON METRIC SPACES
We show that there exist a linear m-isometry on a Hilbert space which is not continuous, and a continuous m-isometry on a Hilbert space which is not affine. Further we define (m, q)-isometries on metric spaces and prove their basic properties.
Gespeichert in:
Veröffentlicht in: | Journal of operator theory 2014-12, Vol.72 (2), p.313-328 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that there exist a linear m-isometry on a Hilbert space which is not continuous, and a continuous m-isometry on a Hilbert space which is not affine. Further we define (m, q)-isometries on metric spaces and prove their basic properties. |
---|---|
ISSN: | 0379-4024 1841-7744 |
DOI: | 10.7900/jot.2013jan29.1996 |