SPECTRAL MULTIPLIER THEOREMS OF HÖRMANDER TYPE ON HARDY AND LEBESGUE SPACES
Let X be a space of homogeneous type and let L be an injective, non-negative, self-adjoint operator on L2(X) such that the semigroup generated by –L fulfills Davies–Gaffney estimates of arbitrary order. We prove that the operator F(L), initially defined on ${\mathrm{H}}_{\mathrm{L}}^{1}\left(\mathrm...
Gespeichert in:
Veröffentlicht in: | Journal of operator theory 2015, Vol.73 (1), p.27-69 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let X be a space of homogeneous type and let L be an injective, non-negative, self-adjoint operator on L2(X) such that the semigroup generated by –L fulfills Davies–Gaffney estimates of arbitrary order. We prove that the operator F(L), initially defined on ${\mathrm{H}}_{\mathrm{L}}^{1}\left(\mathrm{X}\right)\cap {\mathrm{L}}^{2}\left(\mathrm{X}\right)$, acts as a bounded linear operator on the Hardy space ${\mathrm{H}}_{\mathrm{L}}^{1}\left(\mathrm{X}\right)$ associated with L whenever F is a bounded, sufficiently smooth function. Based on this result, together with interpolation, we establish Hörmander type spectral multiplier theorems on Lebesgue spaces for non-negative, self-adjoint operators satisfying generalized Gaussian estimates. In this setting our results improve previously known ones. |
---|---|
ISSN: | 0379-4024 1841-7744 |
DOI: | 10.7900/jot.2013aug29.2038 |