SPECTRAL MULTIPLIER THEOREMS OF HÖRMANDER TYPE ON HARDY AND LEBESGUE SPACES

Let X be a space of homogeneous type and let L be an injective, non-negative, self-adjoint operator on L2(X) such that the semigroup generated by –L fulfills Davies–Gaffney estimates of arbitrary order. We prove that the operator F(L), initially defined on ${\mathrm{H}}_{\mathrm{L}}^{1}\left(\mathrm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of operator theory 2015, Vol.73 (1), p.27-69
Hauptverfasser: KUNSTMANN, PEER CHRISTIAN, UHL, MATTHIAS
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be a space of homogeneous type and let L be an injective, non-negative, self-adjoint operator on L2(X) such that the semigroup generated by –L fulfills Davies–Gaffney estimates of arbitrary order. We prove that the operator F(L), initially defined on ${\mathrm{H}}_{\mathrm{L}}^{1}\left(\mathrm{X}\right)\cap {\mathrm{L}}^{2}\left(\mathrm{X}\right)$, acts as a bounded linear operator on the Hardy space ${\mathrm{H}}_{\mathrm{L}}^{1}\left(\mathrm{X}\right)$ associated with L whenever F is a bounded, sufficiently smooth function. Based on this result, together with interpolation, we establish Hörmander type spectral multiplier theorems on Lebesgue spaces for non-negative, self-adjoint operators satisfying generalized Gaussian estimates. In this setting our results improve previously known ones.
ISSN:0379-4024
1841-7744
DOI:10.7900/jot.2013aug29.2038