Effects of trench profile and self-aligned ion implantation on electrical characteristics of 1.2 kV 4H-SiC trench MOSFETs using bottom protection p-well
The effects of a trench profile and self-aligned ion implantation on the electrical characteristics of 1.2 kV 4H-SiC trench MOSFETs employing a bottom protection p-well (BPW) were investigated to improve blocking capability by simulation studies. The trench profile and thickness of a SiO2 spacer dur...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2018-06, Vol.57 (6S1), p.6 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effects of a trench profile and self-aligned ion implantation on the electrical characteristics of 1.2 kV 4H-SiC trench MOSFETs employing a bottom protection p-well (BPW) were investigated to improve blocking capability by simulation studies. The trench profile and thickness of a SiO2 spacer during self-aligned ion implantation for BPW affect electrons flow through a trench gate as well as E-field concentration at the gate insulator on a trench bottom. At trench angle higher than 84° and a SiO2 spacer thicker than 0.2 µm showed that the Al concentration penetrated into the trench sidewall during ion implantation is less than 0.3% in comparison with the background doping concentration in a drift region. Under the optimum conditions with a trench angle of 90° and 0.2-µm-thick SiO2 spacer, a high breakdown voltage of 1.45 kV with a low E-field peak in the gate insulator was achieved. |
---|---|
ISSN: | 0021-4922 1347-4065 |
DOI: | 10.7567/JJAP.57.06HC07 |