Influence of basal-plane dislocation structures on expansion of single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes

The origin of expanded single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes was investigated by the stress-current test. At a stress-current density lower than 25 A cm−2, triangular stacking faults were formed from basal-plane dislocations in the epitaxial layer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2018-04, Vol.57 (4S), p.4
Hauptverfasser: Hayashi, Shohei, Yamashita, Tamotsu, Senzaki, Junji, Miyazato, Masaki, Ryo, Mina, Miyajima, Masaaki, Kato, Tomohisa, Yonezawa, Yoshiyuki, Kojima, Kazutoshi, Okumura, Hajime
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The origin of expanded single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes was investigated by the stress-current test. At a stress-current density lower than 25 A cm−2, triangular stacking faults were formed from basal-plane dislocations in the epitaxial layer. At a stress-current density higher than 350 A cm−2, both triangular and long-zone-shaped stacking faults were formed from basal-plane dislocations that converted into threading edge dislocations near the interface between the epitaxial layer and the substrate. In addition, the conversion depth of basal-plane dislocations that expanded into the stacking fault was inside the substrate deeper than the interface. These results indicate that the conversion depth of basal-plane dislocations strongly affects the threshold stress-current density at which the expansion of stacking faults occurs.
ISSN:0021-4922
1347-4065
DOI:10.7567/JJAP.57.04FR07