Effects of radical initiators, polymerization inhibitors, and other agents on the sonochemical unzipping of double-walled carbon nanotubes
The mechanism of graphene nanoribbon synthesis by the sonication-assisted unzipping of carbon nanotubes (CNTs) was investigated utilizing 4-methoxyphenol and 1,4-dimethoxybenzene as moieties of poly[(m-phenylenevinylene)-co-(2,5-dioctoxy-p-phenylenevinylene)]. The obtained results revealed that unzi...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2018-03, Vol.57 (3S2), p.3 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mechanism of graphene nanoribbon synthesis by the sonication-assisted unzipping of carbon nanotubes (CNTs) was investigated utilizing 4-methoxyphenol and 1,4-dimethoxybenzene as moieties of poly[(m-phenylenevinylene)-co-(2,5-dioctoxy-p-phenylenevinylene)]. The obtained results revealed that unzipping was promoted by 4-methoxyphenol owing to the facile abstraction of its phenolic hydrogen by sonication-generated radicals on CNTs, whereas 1,4-dimethoxybenzene did not facilitate unzipping, since its methoxy hydrogens were hardly abstracted. Moreover, unzipping was also facilitated by trans-stilbene, the double bond of which reacts with CNT radicals. Furthermore, we succeeded in using a general radical initiator, namely, 2,2′-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride to promote unzipping, confirming that it is promoted by radical donors/trapping agents. |
---|---|
ISSN: | 0021-4922 1347-4065 |
DOI: | 10.7567/JJAP.57.03ED01 |