Evaluation of stress stabilities in amorphous In-Ga-Zn-O thin-film transistors: Effect of passivation with Si-based resin
Fabrication process conditions of a passivation (PV) layer correlated with stress stabilities of amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs). In etch-stop layer (ESL)-TFTs, by inserting a Si-based resin between SiNx and SiOx PV layers, the peak intensity in the photoinduced transient...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2018-02, Vol.57 (2S2), p.2 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fabrication process conditions of a passivation (PV) layer correlated with stress stabilities of amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs). In etch-stop layer (ESL)-TFTs, by inserting a Si-based resin between SiNx and SiOx PV layers, the peak intensity in the photoinduced transient spectroscopy (PITS) spectrum was notably reduced. This suggested the suppression of hydrogen incorporation into a-IGZO, which led to the improvement of stability under negative bias thermal illumination stress (NBTIS). In contrast, the hydrogen-related defects in the a-IGZO were easily formed by the back-channel etch (BCE) process. Furthermore, it was found that, under NBTIS, the transfer curves of the BCE-TFTs shifted in parallel owing to the positive fixed charge located in the back channel of the a-IGZO TFTs. The hump-shaped shift increased with stress time. This is because hydrogen atoms located at the back-channel surfaces of the a-IGZO and/or PV layers were incorporated into the channel region of the BCE-TFTs and induced the hydrogen-related defects. |
---|---|
ISSN: | 0021-4922 1347-4065 |
DOI: | 10.7567/JJAP.57.02CB06 |