Pencil-shaped silicon nanowire synthesis and photovoltaic application

Pencil-shaped silicon nanowires (SiNWs) were synthesized by colloidal lithography and inductively coupled plasma reactive ion etching for photovoltaic application. Light reflectance of below 10% could be obtained by the asymmetric pencil-shaped SiNW array. The pencil-shaped SiNW structure and proper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2017-08, Vol.56 (8), p.85201
Hauptverfasser: Jevasuwan, Wipakorn, Chen, Junyi, Subramani, Thiyagu, Pradel, Ken C., Takei, Toshiaki, Dai, Kotaro, Shinotsuka, Kei, Hatta, Yoshihisa, Fukata, Naoki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pencil-shaped silicon nanowires (SiNWs) were synthesized by colloidal lithography and inductively coupled plasma reactive ion etching for photovoltaic application. Light reflectance of below 10% could be obtained by the asymmetric pencil-shaped SiNW array. The pencil-shaped SiNW structure and properties were investigated and compared with metal catalyzed electroless etching (MCEE) and nanoimprinted SiNWs. Single-junction solar cells consisting of pencil-shaped n-SiNW substrates and p-Si shell layer grown by chemical vapor deposition were fabricated. A combination of two-step H2 annealing and back surface field formation was applied to improve the solar cell properties. Good crystal quality and surface of pencil-shaped SiNWs provided an excellent solar cell junction interface. The great light trapping of the pencil-shaped SiNW solar cell could enhance the conversion efficiency by more than 0.6% compared to the solar cells using MCEE and nanoimprinted SiNWs.
ISSN:0021-4922
1347-4065
DOI:10.7567/JJAP.56.085201