Axial strain effects on ballistic phonon thermal transport in silicon nanowires

We study the effects of axial strain on phonon thermal transport in silicon nanowires (Si NWs). The thermal conductance of strained Si NWs in the ballistic regime is evaluated with the phonon dispersion relation derived through an atomistic approach. Compressive strain increases the ballistic therma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2016-04, Vol.55 (4S), p.4
Hauptverfasser: Hattori, Junichi, Poborchii, Vladimir, Tada, Tetsuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the effects of axial strain on phonon thermal transport in silicon nanowires (Si NWs). The thermal conductance of strained Si NWs in the ballistic regime is evaluated with the phonon dispersion relation derived through an atomistic approach. Compressive strain increases the ballistic thermal conductance of [100]-oriented Si NWs having a square cross section with a side length of about 3 nm. In contrast, tensile strain reduces it. These strain effects mainly result from two factors: a change in the phonon energy per unit length of a NW directly due to the length change of the NW, and a change in the phonon group velocity. We also investigate the relationships of the strain effects with the wire size, surface orientation, and wire orientation. Among the three factors, the wire orientation has the most significant effect on the strain effects.
ISSN:0021-4922
1347-4065
DOI:10.7567/JJAP.55.04EP07