Electrochemical fabrication of nanocomposite films containing magnetic metal nanoparticles
Controlling the structure composed of soft and hard magnetic phases at the nanoscale is the key to fabricating nanocomposite magnets with efficient exchange coupling. In our previous study, nanocomposite films containing ferrite nanoparticles were fabricated by a combination of electrophoretic depos...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2015-07, Vol.54 (7), p.75201 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Controlling the structure composed of soft and hard magnetic phases at the nanoscale is the key to fabricating nanocomposite magnets with efficient exchange coupling. In our previous study, nanocomposite films containing ferrite nanoparticles were fabricated by a combination of electrophoretic deposition and electroplating to show one possibility of controlling the structure of nanocomposite magnets three-dimensionally by applying self-assembly of magnetic nanoparticles. To expand this combination method to the fabrication of nanocomposite magnets, the use of magnetic metal nanoparticles is desired. In this paper, we attempted to fabricate nanocomposite films composed of Fe-Co nanoparticles in a Fe-Pt matrix by this combination method. Through cross-sectional observation and XRD analysis, a nanostructure composed of Fe-Co nanoparticles embedded in a L10 Fe-Pt matrix was confirmed. These results indicate that this method is capable of producing composite materials containing metal magnetic nanoparticles. |
---|---|
ISSN: | 0021-4922 1347-4065 |
DOI: | 10.7567/JJAP.54.075201 |