Strong visible magnetic resonance of size-controlled silicon-nanoblock metasurfaces
To extend the operating window of all-dielectric metamaterials into the visible regime, obtaining controllable magnetic resonance is essential. We experimentally demonstrated strong magnetic resonance at 595 nm using an array of amorphous silicon (a-Si) nanoblocks. The results of both theoretical ca...
Gespeichert in:
Veröffentlicht in: | Applied physics express 2016-04, Vol.9 (4), p.42001 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To extend the operating window of all-dielectric metamaterials into the visible regime, obtaining controllable magnetic resonance is essential. We experimentally demonstrated strong magnetic resonance at 595 nm using an array of amorphous silicon (a-Si) nanoblocks. The results of both theoretical calculations and experiments show that magnetic resonance can be tuned continuously by appropriately varying the size and thickness of a-Si nanoblocks. We also experimentally achieved a magnetic resonance Q-factor of ∼10, which is a higher value than that yielded by a metallic split-ring resonator in the visible regime. |
---|---|
ISSN: | 1882-0778 1882-0786 |
DOI: | 10.7567/APEX.9.042001 |