Design of an energy-efficient XNOR gate based on MTJ-based nonvolatile logic-in-memory architecture for binary neural network hardware

A nonvolatile logic gate based on magnetic tunnel junction-based nonvolatile logic-in-memory (NV-LIM) architecture is designed for the implementation of compact and low-power binary neural network (BNN) hardware. The use of NV-LIM architecture for designing BNN hardware makes it possible to reduce b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2019-04, Vol.58 (SB), p.SBBB01
Hauptverfasser: Natsui, Masanori, Chiba, Tomoki, Hanyu, Takahiro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue SB
container_start_page SBBB01
container_title Japanese Journal of Applied Physics
container_volume 58
creator Natsui, Masanori
Chiba, Tomoki
Hanyu, Takahiro
description A nonvolatile logic gate based on magnetic tunnel junction-based nonvolatile logic-in-memory (NV-LIM) architecture is designed for the implementation of compact and low-power binary neural network (BNN) hardware. The use of NV-LIM architecture for designing BNN hardware makes it possible to reduce both computational and data transfer costs associated with inference functions of deep neural networks. Through an experimental evaluation of a basic component of BNN hardware designed with NV-LIM architecture, we demonstrate that a nonvolatile logic gate designed and optimized based on its quantitative analysis can reduce the circuit area to 32% of a conventional structure as well as reduce the average power consumption assuming intermittent operation in sensor node applications to 14%.
doi_str_mv 10.7567/1347-4065/aafb4d
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_7567_1347_4065_aafb4d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jjapaafb4d</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-c51ee9a9f54f1a2269b086448761bb0738aab4c87df47e96347c98bf9291263c3</originalsourceid><addsrcrecordid>eNp1kFtLAzEQhYMoWKvvPuZVMJrsZm-Ptt7xAl7AtzCbnbSp26Rktxb_gL_blIpPCgOHGeYcDh8hh4KfFFlenIpUFkzyPDsFMLVstsjg97RNBpwngskqSXbJXtfN4ppnUgzI1zl2duKoNxQcRYdh8snQGKstup6-PTw-0Qn0SGvosKHe0fuXW7ZZnHcfvoXetkhbP7GaWcfmOPfhk0LQU9uj7pcBqfGB1tZBvDtcBmij9Csf3ukUQrOCgPtkx0Db4cGPDsnr5cXL-JrdPV7djM_umE5L3jOdCcQKKpNJIyBJ8qrmZS5lWeSirnmRlgC11GXRGFlglUcAuiprUyWVSPJUp0PCN7k6-K4LaNQi2HkspgRXa45qDU2toakNx2g52lisX6iZXwYXC6rZDBYqK9XzKM5oxIVaNCb-Hv_x-2_0N826hUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design of an energy-efficient XNOR gate based on MTJ-based nonvolatile logic-in-memory architecture for binary neural network hardware</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Natsui, Masanori ; Chiba, Tomoki ; Hanyu, Takahiro</creator><creatorcontrib>Natsui, Masanori ; Chiba, Tomoki ; Hanyu, Takahiro</creatorcontrib><description>A nonvolatile logic gate based on magnetic tunnel junction-based nonvolatile logic-in-memory (NV-LIM) architecture is designed for the implementation of compact and low-power binary neural network (BNN) hardware. The use of NV-LIM architecture for designing BNN hardware makes it possible to reduce both computational and data transfer costs associated with inference functions of deep neural networks. Through an experimental evaluation of a basic component of BNN hardware designed with NV-LIM architecture, we demonstrate that a nonvolatile logic gate designed and optimized based on its quantitative analysis can reduce the circuit area to 32% of a conventional structure as well as reduce the average power consumption assuming intermittent operation in sensor node applications to 14%.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.7567/1347-4065/aafb4d</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>IOP Publishing</publisher><ispartof>Japanese Journal of Applied Physics, 2019-04, Vol.58 (SB), p.SBBB01</ispartof><rights>2019 The Japan Society of Applied Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-c51ee9a9f54f1a2269b086448761bb0738aab4c87df47e96347c98bf9291263c3</citedby><cites>FETCH-LOGICAL-c380t-c51ee9a9f54f1a2269b086448761bb0738aab4c87df47e96347c98bf9291263c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.7567/1347-4065/aafb4d/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Natsui, Masanori</creatorcontrib><creatorcontrib>Chiba, Tomoki</creatorcontrib><creatorcontrib>Hanyu, Takahiro</creatorcontrib><title>Design of an energy-efficient XNOR gate based on MTJ-based nonvolatile logic-in-memory architecture for binary neural network hardware</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>A nonvolatile logic gate based on magnetic tunnel junction-based nonvolatile logic-in-memory (NV-LIM) architecture is designed for the implementation of compact and low-power binary neural network (BNN) hardware. The use of NV-LIM architecture for designing BNN hardware makes it possible to reduce both computational and data transfer costs associated with inference functions of deep neural networks. Through an experimental evaluation of a basic component of BNN hardware designed with NV-LIM architecture, we demonstrate that a nonvolatile logic gate designed and optimized based on its quantitative analysis can reduce the circuit area to 32% of a conventional structure as well as reduce the average power consumption assuming intermittent operation in sensor node applications to 14%.</description><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kFtLAzEQhYMoWKvvPuZVMJrsZm-Ptt7xAl7AtzCbnbSp26Rktxb_gL_blIpPCgOHGeYcDh8hh4KfFFlenIpUFkzyPDsFMLVstsjg97RNBpwngskqSXbJXtfN4ppnUgzI1zl2duKoNxQcRYdh8snQGKstup6-PTw-0Qn0SGvosKHe0fuXW7ZZnHcfvoXetkhbP7GaWcfmOPfhk0LQU9uj7pcBqfGB1tZBvDtcBmij9Csf3ukUQrOCgPtkx0Db4cGPDsnr5cXL-JrdPV7djM_umE5L3jOdCcQKKpNJIyBJ8qrmZS5lWeSirnmRlgC11GXRGFlglUcAuiprUyWVSPJUp0PCN7k6-K4LaNQi2HkspgRXa45qDU2toakNx2g52lisX6iZXwYXC6rZDBYqK9XzKM5oxIVaNCb-Hv_x-2_0N826hUc</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Natsui, Masanori</creator><creator>Chiba, Tomoki</creator><creator>Hanyu, Takahiro</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190401</creationdate><title>Design of an energy-efficient XNOR gate based on MTJ-based nonvolatile logic-in-memory architecture for binary neural network hardware</title><author>Natsui, Masanori ; Chiba, Tomoki ; Hanyu, Takahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-c51ee9a9f54f1a2269b086448761bb0738aab4c87df47e96347c98bf9291263c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Natsui, Masanori</creatorcontrib><creatorcontrib>Chiba, Tomoki</creatorcontrib><creatorcontrib>Hanyu, Takahiro</creatorcontrib><collection>CrossRef</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Natsui, Masanori</au><au>Chiba, Tomoki</au><au>Hanyu, Takahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of an energy-efficient XNOR gate based on MTJ-based nonvolatile logic-in-memory architecture for binary neural network hardware</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>58</volume><issue>SB</issue><spage>SBBB01</spage><pages>SBBB01-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>A nonvolatile logic gate based on magnetic tunnel junction-based nonvolatile logic-in-memory (NV-LIM) architecture is designed for the implementation of compact and low-power binary neural network (BNN) hardware. The use of NV-LIM architecture for designing BNN hardware makes it possible to reduce both computational and data transfer costs associated with inference functions of deep neural networks. Through an experimental evaluation of a basic component of BNN hardware designed with NV-LIM architecture, we demonstrate that a nonvolatile logic gate designed and optimized based on its quantitative analysis can reduce the circuit area to 32% of a conventional structure as well as reduce the average power consumption assuming intermittent operation in sensor node applications to 14%.</abstract><pub>IOP Publishing</pub><doi>10.7567/1347-4065/aafb4d</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2019-04, Vol.58 (SB), p.SBBB01
issn 0021-4922
1347-4065
language eng
recordid cdi_crossref_primary_10_7567_1347_4065_aafb4d
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Design of an energy-efficient XNOR gate based on MTJ-based nonvolatile logic-in-memory architecture for binary neural network hardware
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A36%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20an%20energy-efficient%20XNOR%20gate%20based%20on%20MTJ-based%20nonvolatile%20logic-in-memory%20architecture%20for%20binary%20neural%20network%20hardware&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Natsui,%20Masanori&rft.date=2019-04-01&rft.volume=58&rft.issue=SB&rft.spage=SBBB01&rft.pages=SBBB01-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.7567/1347-4065/aafb4d&rft_dat=%3Ciop_cross%3Ejjapaafb4d%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true