SOD1 is a synthetic-lethal target in PPM1D-mutant leukemia cells
The DNA damage response is critical for maintaining genome integrity and is commonly disrupted in the development of cancer. PPM1D (protein phosphatase Mg 2+ /Mn 2+ -dependent 1D) is a master negative regulator of the response; gain-of-function mutations and amplifications of PPM1D are found across...
Gespeichert in:
Veröffentlicht in: | eLife 2024-06, Vol.12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The DNA damage response is critical for maintaining genome integrity and is commonly disrupted in the development of cancer. PPM1D (protein phosphatase Mg 2+ /Mn 2+ -dependent 1D) is a master negative regulator of the response; gain-of-function mutations and amplifications of PPM1D are found across several human cancers making it a relevant pharmacological target. Here, we used CRISPR/Cas9 screening to identify synthetic-lethal dependencies of PPM1D, uncovering superoxide dismutase-1 (SOD1) as a potential target for PPM1D -mutant cells. We revealed a dysregulated redox landscape characterized by elevated levels of reactive oxygen species and a compromised response to oxidative stress in PPM1D -mutant cells. Altogether, our results demonstrate a role for SOD1 in the survival of PPM1D -mutant leukemia cells and highlight a new potential therapeutic strategy against PPM1D -mutant cancers. |
---|---|
ISSN: | 2050-084X 2050-084X |
DOI: | 10.7554/eLife.91611.3 |