Saturated simple and 2-simple topological graphs with few edges

A simple topological graph is a topological graph in which any two edges have at most one common point, which is either their common endpoint or a proper crossing. More generally, in a $k$-simple topological graph, every pair of edges has at most $k$ common points of this kind. We construct saturate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph algorithms and applications 2018-01, Vol.22 (1), p.117-138
Hauptverfasser: Hajnal, Péter, Igamberdiev, Alexander, Rote, Günter, Schulz, André
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A simple topological graph is a topological graph in which any two edges have at most one common point, which is either their common endpoint or a proper crossing. More generally, in a $k$-simple topological graph, every pair of edges has at most $k$ common points of this kind. We construct saturated simple and 2-simple graphs with few edges. These are $k$-simple graphs in which no further edge can be added. We improve the previous upper bounds of Kynčl, Pach, Radoičić, and Tóth [Comput. Geom., 48, 2015] and show that there are saturated simple graphs on $n$ vertices with only $7n$ edges and saturated 2-simple graphs on $n$ vertices with $14.5n$ edges. As a consequence, there is a $k$-simple graph (for a general $k$), which can be saturated using $14.5n$ edges, while previous upper bounds suggested $17.5n$ edges. We also construct saturated simple and 2-simple graphs that have some vertices with low degree.
ISSN:1526-1719
1526-1719
DOI:10.7155/jgaa.00460