CONVERGENCE IN CAPACITY AND APPLICATIONS
In this article we prove that if uj, vj, w ∈ E(Ω) such that uj, vj ≥ w, ∀ j ≥ 1, and |uj - vj| → 0 in Cn-capacity, then limj→∞ h(φ1,..., φm) [(ddc uj)n - (ddc vj)n] = 0 in the weak-topology of measures for all ${\mathrm{\phi }}_{1},\mathrm{...},{\mathrm{\phi }}_{\mathrm{m}}\in \mathrm{P}\mathrm{S}\m...
Gespeichert in:
Veröffentlicht in: | Mathematica scandinavica 2010-01, Vol.107 (1), p.90-102 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article we prove that if uj, vj, w ∈ E(Ω) such that uj, vj ≥ w, ∀ j ≥ 1, and |uj - vj| → 0 in Cn-capacity, then limj→∞ h(φ1,..., φm) [(ddc uj)n - (ddc vj)n] = 0 in the weak-topology of measures for all ${\mathrm{\phi }}_{1},\mathrm{...},{\mathrm{\phi }}_{\mathrm{m}}\in \mathrm{P}\mathrm{S}\mathrm{H}\cap {\mathrm{L}}_{\mathrm{l}\mathrm{o}\mathrm{c}}^{\mathrm{\infty }}\left(\mathrm{\Omega }\right)$, h ∈ C(Rm). We shall then use this result to give some applications. |
---|---|
ISSN: | 0025-5521 1903-1807 |
DOI: | 10.7146/math.scand.a-15144 |