RANDOM EUCLIDEAN SECTIONS OF SOME CLASSICAL BANACH SPACES

Using probabilistic arguments, we give precise estimates of the Banach-Mazur distance of subspaces of the classical ${\mathrm{\ell}}_{\mathrm{q}}^{\mathrm{n}}$ spaces and of Schatten classes of operators ${\mathrm{S}}_{\mathrm{q}}^{\mathrm{n}}$ for q ≥ 2 to the Euclidean space. We also estimate volu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematica scandinavica 2002-01, Vol.91 (2), p.247-268
Hauptverfasser: GORDON, Y., GUÉDON, O., MEYER, M., PAJOR, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using probabilistic arguments, we give precise estimates of the Banach-Mazur distance of subspaces of the classical ${\mathrm{\ell}}_{\mathrm{q}}^{\mathrm{n}}$ spaces and of Schatten classes of operators ${\mathrm{S}}_{\mathrm{q}}^{\mathrm{n}}$ for q ≥ 2 to the Euclidean space. We also estimate volume ratios of random subspaces of a normed space with respect to subspaces of quotients of lq. Finally, the preceeding methods are applied to give estimates of Gelfand numbers of some linear operators.
ISSN:0025-5521
1903-1807
DOI:10.7146/math.scand.a-14389