RANDOM EUCLIDEAN SECTIONS OF SOME CLASSICAL BANACH SPACES
Using probabilistic arguments, we give precise estimates of the Banach-Mazur distance of subspaces of the classical ${\mathrm{\ell}}_{\mathrm{q}}^{\mathrm{n}}$ spaces and of Schatten classes of operators ${\mathrm{S}}_{\mathrm{q}}^{\mathrm{n}}$ for q ≥ 2 to the Euclidean space. We also estimate volu...
Gespeichert in:
Veröffentlicht in: | Mathematica scandinavica 2002-01, Vol.91 (2), p.247-268 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using probabilistic arguments, we give precise estimates of the Banach-Mazur distance of subspaces of the classical ${\mathrm{\ell}}_{\mathrm{q}}^{\mathrm{n}}$ spaces and of Schatten classes of operators ${\mathrm{S}}_{\mathrm{q}}^{\mathrm{n}}$ for q ≥ 2 to the Euclidean space. We also estimate volume ratios of random subspaces of a normed space with respect to subspaces of quotients of lq. Finally, the preceeding methods are applied to give estimates of Gelfand numbers of some linear operators. |
---|---|
ISSN: | 0025-5521 1903-1807 |
DOI: | 10.7146/math.scand.a-14389 |