ZERO-DIVISOR GRAPHS OF AMALGAMATIONS
Let f : A → B be a homomorphism of commutative rings and let J be an ideal of B. The amalgamation of A with B along J with respect to f is the subring of A × B given by A ⋈f J := {(a, f(a) + j) | a ∊ A, j ∊ J}. This paper investigates the zero-divisor graph of amalgamations. Our aim is to characteri...
Gespeichert in:
Veröffentlicht in: | Mathematica scandinavica 2018-09, Vol.123 (2), p.174-190 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let f : A → B be a homomorphism of commutative rings and let J be an ideal of B. The amalgamation of A with B along J with respect to f is the subring of A × B given by A ⋈f J := {(a, f(a) + j) | a ∊ A, j ∊ J}. This paper investigates the zero-divisor graph of amalgamations. Our aim is to characterize when the graph is complete and compute its diameter and girth for various contexts of amalgamations. The new results recover well-known results on duplications, and yield new and original examples issued from amalgamations. |
---|---|
ISSN: | 0025-5521 1903-1807 |
DOI: | 10.7146/math.scand.a-105307 |