Topological Completeness for Higher-Order Logic

Using recent results in topos theory, two systems of higher-order logic are shown to be complete with respect to sheaf models over topological spaces - so-called "topological semantics". The first is classical higher order logic, with relational quantification of finitely high type; the se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BRICS Report Series 1997-01, Vol.4 (21)
Hauptverfasser: Awodey, Steve, Butz, Carsten
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using recent results in topos theory, two systems of higher-order logic are shown to be complete with respect to sheaf models over topological spaces - so-called "topological semantics". The first is classical higher order logic, with relational quantification of finitely high type; the second system is a predicative fragment thereof with quantification over functions between types, but not over arbitrary relations. The second theorem applies to intuitionistic as well as classical logic.
ISSN:0909-0878
1601-5355
DOI:10.7146/brics.v4i21.18947