Basic Study on Image Segmentation of the Heart Regions by Semi-Teacher Learning

The purpose of this study is to facilitate the diagnosis of cardiovascular diseases. We perform semantic segmentation of the heart from CT images using Fully Convolutional Neural Networks. In the case of medical images it is difficult to create or obtain label data. Therefore, we studied semi - supe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nihon Gaku Koukou Kinou Gakkai zasshi 2021, Vol.27(1), pp.1-10
Hauptverfasser: SEKIMURA, SHOTO, TAKAYASHIKI, ITARU, KATO, TORU, DOI, AKIO, HOZAWA, MAIKO, MORINO, YOSHIHIRO
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this study is to facilitate the diagnosis of cardiovascular diseases. We perform semantic segmentation of the heart from CT images using Fully Convolutional Neural Networks. In the case of medical images it is difficult to create or obtain label data. Therefore, we studied semi - supervised Learning method combining Adversarial Network and Adversarial Training in order to create highly accurate segmentation model with less label data. We showed that a combination of Adversarial Network and Adversarial Training can create a more accurate cardiac segmentation model even when the number of label data is small.
ISSN:1340-9085
1883-986X
DOI:10.7144/sgf.27.1