Extreme Learning Machine-based Crop Classification using ALOS/PALSAR Images
Classification maps are required for agricultural management and the estimation of agricultural disaster compensation. The extreme learning machine (ELM), a newly developed single hidden layer neural network is used as a supervised classifier for remote sensing classifications. In this study, the EL...
Gespeichert in:
Veröffentlicht in: | JARQ. Japan agricultural research quarterly 2015/10/01, Vol.49(4), pp.377-381 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Classification maps are required for agricultural management and the estimation of agricultural disaster compensation. The extreme learning machine (ELM), a newly developed single hidden layer neural network is used as a supervised classifier for remote sensing classifications. In this study, the ELM was evaluated to examine its potential for multi-temporal ALOS/PALSAR images for the classification of crop type. In addition, the k-nearest neighbor algorithm (k-NN), one of the traditional classification methods, was also applied for comparison with the ELM. In the study area, beans, beets, grasses, maize, potato, and winter wheat were cultivated; and these crop types in each field were identified using a data set acquired in 2010. The result of ELM classification was superior to that of k-NN; and overall accuracy was 79.3%. This study highlights the advantages of ALOS/PALSAR images for agricultural field monitoring and indicates the usefulness of regular monitoring using the ALOS-2/PALSAR-2 system. |
---|---|
ISSN: | 0021-3551 2185-8896 |
DOI: | 10.6090/jarq.49.377 |