STUDY OF INFLUENCE OF STABILIZERS ON BURNING OF SILICONE RUBBER WITH HELP ARTIFICIAL NEURAL NETWORKS

Silicone rubbers are used for manufacturing fireproof insulating sheaths for cables and high voltage insulators. Highly oil-resistant silicone rubber of brand IRP 1338 of JSC “Kazan plant of synthetic caoutchouc” production should be singled out among silicone rubbers. This rubber is made from synth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 2018-01, Vol.61 (1), p.84
Hauptverfasser: Abrukov, Viktor S., Efimov, Konstantin V., Tarasov, Nikolai A., Kol'tsov, Nikolay I.
Format: Artikel
Sprache:eng ; rus
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silicone rubbers are used for manufacturing fireproof insulating sheaths for cables and high voltage insulators. Highly oil-resistant silicone rubber of brand IRP 1338 of JSC “Kazan plant of synthetic caoutchouc” production should be singled out among silicone rubbers. This rubber is made from synthetic caoutchouc SKTV and contains Aerosil A-300, titanium oxide, fumed silica U-333 curing agent Perkadox BC-FF and anti-structuring agent ND-8 - α,ω-polydimethyl-siloxanediol. Previously we investigated the kinetics of combustion process of this rubber containing anti-structuring agent ND-8 as well as Ca/Zn-stabilizer Kompanoks (2,6-bis((3,5-di-tert-butyl-4-hydroxyphenyl)methyl)cyclohexane-1-one) and their combination which are used to enhance the thermal stability of the rubbers on the basis of carbon-chain caoutchoucs. In given paper using artificial neural networks (ANN) the computational multifactor model of combustion of rubber IRP 1338 has been obtained. The influence of selected stabilizers on the combustion rate of silicone rubber IRP 1338 has been studied. The combustion process was investigated by measuring at different points in time the relative height of the unburned portion of the rubber samples in the form of standard rectangular bars with a size of 10x2x2 mm. Combustion occurred under the action of the infrared beam (wavelength 10.6 μm) of laser LG-25  at three temperatures radiation (800, 900, 1000°C). As the main factors influencing the combustion of rubber, the laser radiation temperature was chosen, under which the forced combustion of rubber occurred. The nature of the stabilizers introduced into the rubber and the combustion temperature of the rubber was measured by a thermocouple placed on the surface of combustion rubber. The objective function of ANN-model was the relative height of the unburned portion of the rubber samples. Moreover, it was believed, the greater the relative height of the unburned portion of the rubber samples, the lower the burning rate and the higher the efficiency of the stabilizer. The received ANN-model has allowed to reveal three stages of combustion of rubber and to investigate features of influence of stabilizers on process of combustion. It was established that from the three stabilizers studied, the Ca/Zn stabilizer most effectively slows down the combustion of rubber due to the interaction of calcium oleates and zinc of this stabilizer with caoutchouc molecules. Thus, the possibility of increasing the fire
ISSN:0579-2991
2500-3070
DOI:10.6060/tcct.20186101.5559