Simultaneous numerical inversion of space-dependent initial condition and source term in multi-order time-fractional diffusion models
This article deals with a simultaneous reconstruction of unknown initial conditions and space-dependent source function in multi-order time-fractional diffusion problems. We discuss the existence and uniqueness of the direct problem. The problem is presented as a regularized optimization problem and...
Gespeichert in:
Veröffentlicht in: | Romanian reports in physics 2024-01, Vol.76 (1), p.104-104 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article deals with a simultaneous reconstruction of unknown
initial conditions and space-dependent source function in multi-order time-fractional
diffusion problems. We discuss the existence and uniqueness of the direct problem.
The problem is presented as a regularized optimization problem and converted into a
variational problem. The existence of the minimizer for the optimization problem is
demonstrated. For the numerical part, a modified Levenberg-Marquardt regularization
approach is constructed to identify the initial condition and source function. Several
numerical examples in one and two dimensions are employed to test the performance
of the identification technique. |
---|---|
ISSN: | 1221-1451 1841-8759 |
DOI: | 10.59277/RomRepPhys.2024.76.104 |