New (3+1)-dimensional integrable generalized KdV equation: Painlevé property, multiple soliton/shock solutions, and a class of lump solutions

The present work aims to examine a newly proposed (3+1)-dimensional integrable generalized Korteweg-de Vries (gKdV) equation. By employing the Weiss- Tabor-Carnevale technique in conjunction with Kruskal ansatz, we establish the com- plete integrability of the suggested model by demonstrating its ab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Romanian reports in physics 2024-01, Vol.76 (1), p.102-102
Hauptverfasser: SHERIF M. E., ISMAEEL, ABDUL-MAJID, WAZWAZ, S. A., EL-TANTAWY
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present work aims to examine a newly proposed (3+1)-dimensional integrable generalized Korteweg-de Vries (gKdV) equation. By employing the Weiss- Tabor-Carnevale technique in conjunction with Kruskal ansatz, we establish the com- plete integrability of the suggested model by demonstrating its ability to satisfy the Painlev´e property. The bilinear form of the (3+1)-dimensional gKdV equation is em- ployed to construct multiple soliton solutions. By manipulating the various values of the corresponding parameters, we generate a category of lump solutions that exhibit localization in all dimensions and algebraic decay.
ISSN:1221-1451
1841-8759
DOI:10.59277/RomRepPhys.2024.76.102