New (3+1)-dimensional integrable generalized KdV equation: Painlevé property, multiple soliton/shock solutions, and a class of lump solutions
The present work aims to examine a newly proposed (3+1)-dimensional integrable generalized Korteweg-de Vries (gKdV) equation. By employing the Weiss- Tabor-Carnevale technique in conjunction with Kruskal ansatz, we establish the com- plete integrability of the suggested model by demonstrating its ab...
Gespeichert in:
Veröffentlicht in: | Romanian reports in physics 2024-01, Vol.76 (1), p.102-102 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present work aims to examine a newly proposed (3+1)-dimensional
integrable generalized Korteweg-de Vries (gKdV) equation. By employing the Weiss-
Tabor-Carnevale technique in conjunction with Kruskal ansatz, we establish the com-
plete integrability of the suggested model by demonstrating its ability to satisfy the
Painlev´e property. The bilinear form of the (3+1)-dimensional gKdV equation is em-
ployed to construct multiple soliton solutions. By manipulating the various values of
the corresponding parameters, we generate a category of lump solutions that exhibit
localization in all dimensions and algebraic decay. |
---|---|
ISSN: | 1221-1451 1841-8759 |
DOI: | 10.59277/RomRepPhys.2024.76.102 |