Infinitely many sign-changing solutions for an asymptotically linear and nonlocal schrodinger equation
In this article, we consider the nonlocal schrodinger equation $$ -\mathcal{L}_K u+V(x)u=f(x,u),\quad x\in\mathbb{R}^N, $$ where \(-\mathcal{L}_K\) is an integro-differential operator and \(V\) is coercive at infinity, and \(f(x,u)\) is asymptotically linear for \(u\) at infinity. Combining mini...
Gespeichert in:
Veröffentlicht in: | Electronic journal of differential equations 2025-01, Vol.2025 (1-??), p.7 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we consider the nonlocal schrodinger equation $$ -\mathcal{L}_K u+V(x)u=f(x,u),\quad x\in\mathbb{R}^N, $$ where \(-\mathcal{L}_K\) is an integro-differential operator and \(V\) is coercive at infinity, and \(f(x,u)\) is asymptotically linear for \(u\) at infinity. Combining minimax method and invariant set of descending flow, we prove that the problem possesses infinitely many sign-changing solutions. For more information see https://ejde.math.txstate.edu/Volumes/2025/07/abstr.html |
---|---|
ISSN: | 1072-6691 1072-6691 |
DOI: | 10.58997/ejde.2025.07 |