Entire solutions for non-linear differential-difference equations
In this article, we investigate the entire solutions of the non-linear differential-difference equation $$ f^n(z) + \omega f^{n-1}(z)f'(z) + q(z)e^{Q(z)}\mathcal{D}(z,f) = p_1(z)e^{\lambda z} + p_2(z)e^{-\lambda z}, $$ where \(\mathcal{D}(z,f) = \sum_{i=0}^k b_if^{(t_i)}(z+c_i) \not\equiv 0\)...
Gespeichert in:
Veröffentlicht in: | Electronic journal of differential equations 2025-01, Vol.2025 (1-??), p.3-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we investigate the entire solutions of the non-linear differential-difference equation $$ f^n(z) + \omega f^{n-1}(z)f'(z) + q(z)e^{Q(z)}\mathcal{D}(z,f) = p_1(z)e^{\lambda z} + p_2(z)e^{-\lambda z}, $$ where \(\mathcal{D}(z,f) = \sum_{i=0}^k b_if^{(t_i)}(z+c_i) \not\equiv 0\), with \(b_i, c_i \in \mathbb{C}\), \(t_i\) being non-negative integers, \(c_0 = 0\), \(t_0 = 0\). Here, \(n\) is an integer, \(\lambda, p_1, p_2\) are non-zero constants, \(\omega\) is a constant, and \(q \not\equiv 0\), \(Q(z)\) are polynomials such that \(Q(z)\) is non-constant. Our results improve upon and generalize some previously established findings in this area. For more information see https://ejde.math.txstate.edu/Volumes/2025/03/abstr.html |
---|---|
ISSN: | 1072-6691 1072-6691 |
DOI: | 10.58997/ejde.2025.03 |