Entire solutions for non-linear differential-difference equations

 In this article, we investigate the entire solutions of the non-linear differential-difference equation $$ f^n(z) + \omega f^{n-1}(z)f'(z) + q(z)e^{Q(z)}\mathcal{D}(z,f)  = p_1(z)e^{\lambda z} + p_2(z)e^{-\lambda z}, $$ where \(\mathcal{D}(z,f) = \sum_{i=0}^k b_if^{(t_i)}(z+c_i) \not\equiv 0\)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of differential equations 2025-01, Vol.2025 (1-??), p.3-10
Hauptverfasser: Banagere Erajikkappa, Manjunath, Waghamore, Harina P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung: In this article, we investigate the entire solutions of the non-linear differential-difference equation $$ f^n(z) + \omega f^{n-1}(z)f'(z) + q(z)e^{Q(z)}\mathcal{D}(z,f)  = p_1(z)e^{\lambda z} + p_2(z)e^{-\lambda z}, $$ where \(\mathcal{D}(z,f) = \sum_{i=0}^k b_if^{(t_i)}(z+c_i) \not\equiv 0\),  with \(b_i, c_i \in \mathbb{C}\), \(t_i\) being non-negative integers,  \(c_0 = 0\), \(t_0 = 0\). Here, \(n\) is an integer, \(\lambda, p_1, p_2\) are  non-zero constants, \(\omega\) is a constant, and  \(q \not\equiv 0\), \(Q(z)\) are polynomials such that \(Q(z)\) is non-constant.  Our results improve upon and generalize some previously established  findings in this area.  For more information see https://ejde.math.txstate.edu/Volumes/2025/03/abstr.html
ISSN:1072-6691
1072-6691
DOI:10.58997/ejde.2025.03