Solutions of complex nonlinear functional equations including second order partial differential and difference in C^2
This article is devoted to exploring the existence and the form of finite order transcendental entire solutions of Fermat-type second order partial differential-difference equations $$ \Big(\frac{\partial^2 f}{\partial z_1^2}+\delta\frac{\partial^2 f}{\partial z_2^2} +\eta\frac{\partial^2 f}{\partia...
Gespeichert in:
Veröffentlicht in: | Electronic journal of differential equations 2023-06, Vol.2023 (1-??), p.43 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article is devoted to exploring the existence and the form of finite order transcendental entire solutions of Fermat-type second order partial differential-difference equations $$ \Big(\frac{\partial^2 f}{\partial z_1^2}+\delta\frac{\partial^2 f}{\partial z_2^2} +\eta\frac{\partial^2 f}{\partial z_1\partial z_2}\Big)^2 +f(z_1+c_1,z_2+c_2)^2=e^{g(z_1,z_2)} $$ and $$ \Big(\frac{\partial^2 f}{\partial z_1^2}+\delta\frac{\partial^2 f}{\partial z_2^2} +\eta\frac{\partial^2 f}{\partial z_1\partial z_2}\Big)^2+(f(z_1+c_1,z_2+c_2) -f(z_1,z_2))^2=e^{g(z)}, $$ where \(\delta,\eta\in\mathbb{C}\) and \(g(z_1,z_2)\) is a polynomial in \(\mathbb{C}^2\). Our results improve the results of Liu and Dong [23] Liu et al. [24] and Liu and Yang [25] Several examples confirm that the form of tr |
---|---|
ISSN: | 1072-6691 1072-6691 |
DOI: | 10.58997/ejde.2023.43 |