Multiplicity results of nonlocal singular PDEs with critical Sobolev-Hardy exponent

 In this article we study a nonlocal equation involving singular and critical Hardy-Sobolev non-linearities, \[\displaylines{(-\Delta_p)^su-\mu \frac{|u|^{p-2}u}{|x|^{sp}}=\lambda u^{-\alpha}+\frac{|u|^{p_s^*(t)-2}u}{|x|^t}, \quad\hbox{in }\Omega, \\ u>0,\quad\text{in }\Omega,\\ \quad u=0, \quad\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of differential equations 2023-01, Vol.2023 (1-08), p.10
Hauptverfasser: Daoues, Adel, Hammami, Amani, Saoudi, Kamel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung: In this article we study a nonlocal equation involving singular and critical Hardy-Sobolev non-linearities, \[\displaylines{(-\Delta_p)^su-\mu \frac{|u|^{p-2}u}{|x|^{sp}}=\lambda u^{-\alpha}+\frac{|u|^{p_s^*(t)-2}u}{|x|^t}, \quad\hbox{in }\Omega, \\ u>0,\quad\text{in }\Omega,\\ \quad u=0, \quad\text{in } \mathbb{R}^N \setminus\Omega }\] where \(\Omega \subset \mathbb{R}^N\) is a bounded domain with Lipschitz boundary and\( (-\Delta_p)^s\)  is the fractional p-Laplacian operator.We combine some variational techniques with a perturbation method to show the existenceof multiple solutions.
ISSN:1072-6691
1072-6691
DOI:10.58997/ejde.2023.10