Optimal decay rates for higher-order derivatives of solutions to 3D compressible Navier-Stokes-Poisson equations with external force
We investigate optimal decay rates for higher-order spatial derivatives of solutions to the 3D compressibleNavier-Stokes-Poisson equations with external force. The main novelty of this article is twofold:First, we prove the first and second order spatial derivatives of the solutions converge to zero...
Gespeichert in:
Veröffentlicht in: | Electronic journal of differential equations 2022-09, Vol.2022 (1-87), p.64 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate optimal decay rates for higher-order spatial derivatives of solutions to the 3D compressibleNavier-Stokes-Poisson equations with external force. The main novelty of this article is twofold:First, we prove the first and second order spatial derivatives of the solutions converge to zero at the \(L^2\)-rate \((1+t)^{-5/4}\), which is faster than the \(L^2\)-rate \((1+t)^{-3/4}\) in Li-Zhang [15]. Second, for well-chosen initial data, we show the lower optimal decay rates of the first order spatial derivative of the solutions. Therefore, our decay rates are optimal in this sense. |
---|---|
ISSN: | 1072-6691 1072-6691 |
DOI: | 10.58997/ejde.2022.64 |