Poisson measures on semi-direct products of infinite-dimensional Hilbert spaces

Let \(G=X\rtimes A\) where X and A are Hilbert spaces considered as additive groups and the A-action on G is diagonal in some orthonormal basis. We consider a particular second order left-invariant differential operator L on G which is analogous to the Laplacian on \(\mathbb{R}^n\). We prove the exi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of differential equations 2022-01, Vol.2022 (1-87), p.4
Hauptverfasser: Penney, Richard C., Urban, Roman
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(G=X\rtimes A\) where X and A are Hilbert spaces considered as additive groups and the A-action on G is diagonal in some orthonormal basis. We consider a particular second order left-invariant differential operator L on G which is analogous to the Laplacian on \(\mathbb{R}^n\). We prove the existence of "heat kernel" for L and give a probabilistic formula for it. We then prove that X is a "Poisson boundary" in a sense of Furstenberg for L with a (not necessarily) probabilistic measure ν on X called the "Poisson measure" for the operator L.
ISSN:1072-6691
1072-6691
DOI:10.58997/ejde.2022.04