Construction and validation of a novel phased array borehole probe for ultrasonic investigations at sealing structures in radioactive repositories
A new type of ultrasonic borehole probe is developed for the quality assurance of sealing structures in radioactive waste repositories using existing research boreholes. The goal is to examine the sealing structures made of salt concrete for possible cracks, delamination, and embedded objects. A pro...
Gespeichert in:
Veröffentlicht in: | E-journal of Nondestructive Testing 2022-09, Vol.27 (9) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new type of ultrasonic borehole probe is developed for the quality assurance of sealing structures in radioactive waste repositories using existing research boreholes. The goal is to examine the sealing structures made of salt concrete for possible cracks, delamination, and embedded objects. A prototype probe uses 12 individual dry point contact (DPC) horizontal shear wave transducers separated by equidistant transmitter/receiver arrays, each made up of six individual transducers. It is operated with a commercially available portable ultrasonic flaw detector used in the civil engineering industry. To increase the generated sound pressure of the borehole probe, the number of transducers in the novel probe is increased to 32. In addition, timed excitation of each probe is used to direct a focused sound beam to a specific angle and distance based on calculated time delays. Hence, the sensitive test volume is limited, and the signal-to-noise ratio of the received signals is improved. This paper presents the validation of the newly developed phased array borehole probe by beam computation in CIVA software and experimental investigations on a semi-cylindrical test specimen to investigate the directional characteristics. In combination with geophysical reconstruction techniques, an optimised radiation pattern of the probe is expected to improve the signal quality and thus increase the reliability of the imaging results. This is of great importance for the construction of safe sealing structures needed for the disposal of radioactive or toxic waste. |
---|---|
ISSN: | 1435-4934 1435-4934 |
DOI: | 10.58286/27208 |