SSKHOA: Hybrid Metaheuristic Algorithm for Resource Aware Task Scheduling in Cloud-fog Computing

Cloud fog computing is a new paradigm that combines cloud computing and fog computing to boost resource efficiency and distributed system performance. Task scheduling is crucial in cloud fog computing because it decides the way computer resources are divided up across tasks. Our study suggests that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of information technology and computer science 2024-02, Vol.16 (1), p.1-12
Hauptverfasser: Kumar, M. Santhosh, Reddy, K. Ganesh, Donthi, Rakesh Kumar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cloud fog computing is a new paradigm that combines cloud computing and fog computing to boost resource efficiency and distributed system performance. Task scheduling is crucial in cloud fog computing because it decides the way computer resources are divided up across tasks. Our study suggests that the Shark Search Krill Herd Optimization (SSKHOA) method be incorporated into cloud fog computing's task scheduling. To enhance both the global and local search capabilities of the optimization process, the SSKHOA algorithm combines the shark search algorithm and the krill herd algorithm. It quickly explores the solution space and finds near-optimal work schedules by modelling the swarm intelligence of krill herds and the predator-prey behavior of sharks. In order to test the efficacy of the SSKHOA algorithm, we created a synthetic cloud fog environment and performed some tests. Traditional task scheduling techniques like LTRA, DRL, and DAPSO were used to evaluate the findings. The experimental results demonstrate that the SSKHOA outperformed the baseline algorithms in terms of task success rate increased 34%, reduced the execution time by 36%, and reduced makespan time by 54% respectively.
ISSN:2074-9007
2074-9015
DOI:10.5815/ijitcs.2024.01.01