A Survey on Security Threats to Machine Learning Systems at Different Stages of its Pipeline
In recent years, Machine learning is being used in various systems in wide variety of applications like Healthcare, Image processing, Computer Vision, Classifications, etc. Machine learning algorithms have shown that it can solve complex problem-solving capabilities close to humans or beyond humans...
Gespeichert in:
Veröffentlicht in: | International journal of information technology and computer science 2023-04, Vol.15 (2), p.23-34 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, Machine learning is being used in various systems in wide variety of applications like Healthcare, Image processing, Computer Vision, Classifications, etc. Machine learning algorithms have shown that it can solve complex problem-solving capabilities close to humans or beyond humans as well. But recent studies show that Machine Learning Algorithms and models are vulnerable to various attacks which compromise security the systems. These attacks are hard to detect because they can hide in data at various stages of machine learning pipeline without being detected. This survey aims to analyse various security attacks on machine learning and categorize them depending on position of attacks in machine learning pipeline. This paper will focus on all aspects of machine learning security at various stages from training phase to testing phase instead of focusing on one type of security attack. Machine Learning pipeline, Attacker’s goals, Attacker’s knowledge, attacks on specified applications are considered in this paper. This paper also presented future scope of research of security attacks in machine learning. In this Survey paper, we concluded that Machine Learning Pipeline itself is vulnerable to different attacks so there is need to build a secure and robust Machine Learning Pipeline. Our survey has categorized these security attacks in details with respect to ML Pipeline stages. |
---|---|
ISSN: | 2074-9007 2074-9015 |
DOI: | 10.5815/ijitcs.2023.02.03 |