Optimization of Calcium Alginate Hydrogel Bioencapsulation of Acinetobacter junii B6, a Lipopeptide Biosurfactant Producer

Background: Biosurfactants are derived from microbes, plants, and animals. Acinetobacter junii B6 is a lipopeptide biosurfactant producer previously investigated for its structure, physicochemical, and product aggregation properties. Objectives: In this study, we investigated and optimized the bioen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Jundishapur journal of natural pharmaceutical products 2023-05, Vol.18 (2)
Hauptverfasser: Ahmadi Borhanabadi, Mohammadhossein, Raeisi Estabragh, Mohammad Amin, Dehghannoudeh, Gholamreza, Banat, Ibrahim M, Ohadi, Mandana, Moshafi, Mohammad Hassan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Biosurfactants are derived from microbes, plants, and animals. Acinetobacter junii B6 is a lipopeptide biosurfactant producer previously investigated for its structure, physicochemical, and product aggregation properties. Objectives: In this study, we investigated and optimized the bioencapsulation of A. junii B6 in calcium alginate hydrogel. Methods: Acinetobacter junii B6 was encapsulated using calcium alginate hydrogel. The formulation of the hydrogel was optimized using a full factorial approach. Sodium alginate concentration, calcium chloride concentration, and hardening time were selected as the main factors, and surface tension was the response measure. A scanning electron microscope (SEM) was used to study the bead's morphology. Results: Scanning electron microscope image showed rounded and smooth beads. The most biosurfactant production and reduced surface tension (35.98 mN/m) were observed at concentrations of 1% calcium chloride, (1%) sodium alginate, and 15 minutes of hardening time. Acinetobacter junii B6 can be encapsulated in alginate hydrogels producing biosurfactant at optimum experimental design. Conclusions: This represents a practical method for optimizing the bioencapsulation of A. junii B6 to produce biosurfactants.
ISSN:1735-7780
2228-7876
DOI:10.5812/jjnpp-134325