Isolation and Genetic Characterization of Vancomycin-resistant and mecC+ Methicillin-resistant Staphylococcus aureus Strains in Clinical Samples of Bojnurd, Northeastern Iran

Background: The emergence of antibiotic-resistant Staphylococcus aureus strains is one of the major concerns about the various staphylococcal infections. Vancomycin is one the most important effective antibiotics on staphylococcal lethal infections. To date, vancomycin-resistant strains are increasi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Jundishapur journal of microbiology 2021-10, Vol.14 (10)
Hauptverfasser: Zarghami Moghaddam, Parastoo, Azimian, Amir, Akhavan Sepahy, Abbas, Iranbakhsh, Alireza
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: The emergence of antibiotic-resistant Staphylococcus aureus strains is one of the major concerns about the various staphylococcal infections. Vancomycin is one the most important effective antibiotics on staphylococcal lethal infections. To date, vancomycin-resistant strains are increasingly isolated in different parts of the world, and it is alerting. Objectives: The current study was designed to evaluate the prevalence, and antibiotic susceptibility pattern of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) isolates in the main tertiary hospital of Bojnurd, Iran. Methods: Staphylococcus aureus isolates were collected from different clinical samples in Imam Reza Hospital of Bojnurd. After identification of isolates through using conventional methods, they were evaluated by agar screening, disk diffusion, and minimum inhibitory concentration (MIC) methods to determine resistance to vancomycin and methicillin. We also performed polymerase chain reaction (PCR) for the detection of mecA, mecC, vanA, and vanB genes. After confirmation of vancomycin resistance, genetic analysis was performed using SCCmec, agr, and spa typing, and multilocus sequence typing (MLST) methods on VRSA isolates. Results: We found four vancomycin-resistant isolates (1.29%). Also, 75% of isolates were resistant to cefoxitin. Using the PCR method, mecA was found in 73%, mecC in 0.64%, and vanA in 1.29% of isolates. Interestingly, we found two mecC positive isolates in MRSA isolates. The alpha-hemolysin (81.81%) and enterotoxin C (27%) had the highest and lowest toxins percentage, respectively. Among mecA positive isolates, SCCmec IV (37%), SCCmec III (31.27%), SCCmec I (14%), SCCmec II (11%), and SCCmec V (5.7%) were the most prevalent SCCmec types, respectively. It should be noted that the two mecC positive isolates belonged to SCCmec XI. Agr I (76.29%) was the highest agr type. We recognized t037 as the dominant spa type, and ST239, ST6, ST97, and ST8 were found in VRSA isolates. Conclusions: In our study, the frequency of mecA genes in MRSA isolates was very high. It seems that the resistant isolates belonged to endemic clones of Iran.
ISSN:2008-3645
2008-4161
DOI:10.5812/jjm.118949