Iwasawa theory for symmetric powers of CM modular forms at nonordinary primes, II
Continuing the study of the Iwasawa theory of symmetric powers of CM modular forms at supersingular primes begun by the first author and Antonio Lei, we prove a Main Conjecture equating the “admissible”p-adicL-functions to the characteristic ideals of “finite-slope” Selmer modules constructed by the...
Gespeichert in:
Veröffentlicht in: | Journal de theorie des nombres de bordeaux 2016-01, Vol.28 (3), p.655-677 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Continuing the study of the Iwasawa theory of symmetric powers of CM modular forms at supersingular primes begun by the first author and Antonio Lei, we prove a Main Conjecture equating the “admissible”p-adicL-functions to the characteristic ideals of “finite-slope” Selmer modules constructed by the second author. As a key ingredient, we improve Rubin’s result on the Main Conjecture of Iwasawa theory for imaginary quadratic fields to an equality at inert primes. |
---|---|
ISSN: | 1246-7405 2118-8572 |
DOI: | 10.5802/jtnb.957 |