Iwasawa theory for symmetric powers of CM modular forms at nonordinary primes, II

Continuing the study of the Iwasawa theory of symmetric powers of CM modular forms at supersingular primes begun by the first author and Antonio Lei, we prove a Main Conjecture equating the “admissible”p-adicL-functions to the characteristic ideals of “finite-slope” Selmer modules constructed by the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal de theorie des nombres de bordeaux 2016-01, Vol.28 (3), p.655-677
Hauptverfasser: HARRON, Robert, POTTHARST, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Continuing the study of the Iwasawa theory of symmetric powers of CM modular forms at supersingular primes begun by the first author and Antonio Lei, we prove a Main Conjecture equating the “admissible”p-adicL-functions to the characteristic ideals of “finite-slope” Selmer modules constructed by the second author. As a key ingredient, we improve Rubin’s result on the Main Conjecture of Iwasawa theory for imaginary quadratic fields to an equality at inert primes.
ISSN:1246-7405
2118-8572
DOI:10.5802/jtnb.957