Waring's problem for Beatty sequences and a local to global principle
Nous examinons de façons diverses la représentation d'un grand nombre entier N comme somme de s entiers positifs qui sont tous des puissances k-ième de termes d'une suite de Beatty donnée. Entre autres, une forme très générale du principe local-global est établie dans la théorie additive d...
Gespeichert in:
Veröffentlicht in: | Journal de theorie des nombres de bordeaux 2014-01, Vol.26 (1), p.1-16 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal de theorie des nombres de bordeaux |
container_volume | 26 |
creator | BANKS, William D. GÜLOĞLU, Ahmet M. VAUGHAN, Robert C. |
description | Nous examinons de façons diverses la représentation d'un grand nombre entier N comme somme de s entiers positifs qui sont tous des puissances k-ième de termes d'une suite de Beatty donnée. Entre autres, une forme très générale du principe local-global est établie dans la théorie additive des nombres. La démonstration est courte mais elle utilise un théorème profond de M. Kneser. We investigate in various ways the representation of a large natural number N as a sum of s positive k-th powers of numbers from a fixed Beatty sequence. Inter alia, a very general form of the local to global principle is established in additive number theory. Although the proof is very short, it depends on a deep theorem of M. Kneser. |
doi_str_mv | 10.5802/jtnb.855 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5802_jtnb_855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43973174</jstor_id><sourcerecordid>43973174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-34effe224a4fa9b83151c645f0220c655ba76b737d96de7b9d66c32ec3a56c923</originalsourceid><addsrcrecordid>eNo9j0tLAzEUhYMoWKvgHxCy083UvB9LLfUBBTeKyyHJJKVDOhmTuOi_d0qLq3sW3zncD4BbjBZcIfLY18EuFOdnYEYwVo3ikpyDGSZMNJIhfgmuSukRIlRoNQOrb5O3w-a-wDEnG_0OhpThsze17mHxP79-cL5AM3TQwJicibAmuInJTmmcqm47Rn8NLoKJxd-c7hx8vaw-l2_N-uP1ffm0bhxRtDaU-RA8IcywYLRVFHPsBOMBEYKc4NwaKaykstOi89LqTghHiXfUcOE0oXPwcNx1OZWSfWinF3Ym71uM2oN-e9BvJ_0JvTuifakp_3OMakmxZPQPQTZXVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Waring's problem for Beatty sequences and a local to global principle</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>NUMDAM</source><source>JSTOR Mathematics & Statistics</source><creator>BANKS, William D. ; GÜLOĞLU, Ahmet M. ; VAUGHAN, Robert C.</creator><creatorcontrib>BANKS, William D. ; GÜLOĞLU, Ahmet M. ; VAUGHAN, Robert C.</creatorcontrib><description>Nous examinons de façons diverses la représentation d'un grand nombre entier N comme somme de s entiers positifs qui sont tous des puissances k-ième de termes d'une suite de Beatty donnée. Entre autres, une forme très générale du principe local-global est établie dans la théorie additive des nombres. La démonstration est courte mais elle utilise un théorème profond de M. Kneser. We investigate in various ways the representation of a large natural number N as a sum of s positive k-th powers of numbers from a fixed Beatty sequence. Inter alia, a very general form of the local to global principle is established in additive number theory. Although the proof is very short, it depends on a deep theorem of M. Kneser.</description><identifier>ISSN: 1246-7405</identifier><identifier>EISSN: 2118-8572</identifier><identifier>DOI: 10.5802/jtnb.855</identifier><language>eng</language><publisher>Institut de mathématiques de Bordeaux</publisher><subject>College mathematics ; Integers ; Mathematical congruence ; Mathematical sequences ; Mathematical theorems ; Natural numbers ; Number theory ; Real numbers</subject><ispartof>Journal de theorie des nombres de bordeaux, 2014-01, Vol.26 (1), p.1-16</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-34effe224a4fa9b83151c645f0220c655ba76b737d96de7b9d66c32ec3a56c923</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43973174$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43973174$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,4010,27900,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>BANKS, William D.</creatorcontrib><creatorcontrib>GÜLOĞLU, Ahmet M.</creatorcontrib><creatorcontrib>VAUGHAN, Robert C.</creatorcontrib><title>Waring's problem for Beatty sequences and a local to global principle</title><title>Journal de theorie des nombres de bordeaux</title><description>Nous examinons de façons diverses la représentation d'un grand nombre entier N comme somme de s entiers positifs qui sont tous des puissances k-ième de termes d'une suite de Beatty donnée. Entre autres, une forme très générale du principe local-global est établie dans la théorie additive des nombres. La démonstration est courte mais elle utilise un théorème profond de M. Kneser. We investigate in various ways the representation of a large natural number N as a sum of s positive k-th powers of numbers from a fixed Beatty sequence. Inter alia, a very general form of the local to global principle is established in additive number theory. Although the proof is very short, it depends on a deep theorem of M. Kneser.</description><subject>College mathematics</subject><subject>Integers</subject><subject>Mathematical congruence</subject><subject>Mathematical sequences</subject><subject>Mathematical theorems</subject><subject>Natural numbers</subject><subject>Number theory</subject><subject>Real numbers</subject><issn>1246-7405</issn><issn>2118-8572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9j0tLAzEUhYMoWKvgHxCy083UvB9LLfUBBTeKyyHJJKVDOhmTuOi_d0qLq3sW3zncD4BbjBZcIfLY18EuFOdnYEYwVo3ikpyDGSZMNJIhfgmuSukRIlRoNQOrb5O3w-a-wDEnG_0OhpThsze17mHxP79-cL5AM3TQwJicibAmuInJTmmcqm47Rn8NLoKJxd-c7hx8vaw-l2_N-uP1ffm0bhxRtDaU-RA8IcywYLRVFHPsBOMBEYKc4NwaKaykstOi89LqTghHiXfUcOE0oXPwcNx1OZWSfWinF3Ym71uM2oN-e9BvJ_0JvTuifakp_3OMakmxZPQPQTZXVw</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>BANKS, William D.</creator><creator>GÜLOĞLU, Ahmet M.</creator><creator>VAUGHAN, Robert C.</creator><general>Institut de mathématiques de Bordeaux</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140101</creationdate><title>Waring's problem for Beatty sequences and a local to global principle</title><author>BANKS, William D. ; GÜLOĞLU, Ahmet M. ; VAUGHAN, Robert C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-34effe224a4fa9b83151c645f0220c655ba76b737d96de7b9d66c32ec3a56c923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>College mathematics</topic><topic>Integers</topic><topic>Mathematical congruence</topic><topic>Mathematical sequences</topic><topic>Mathematical theorems</topic><topic>Natural numbers</topic><topic>Number theory</topic><topic>Real numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BANKS, William D.</creatorcontrib><creatorcontrib>GÜLOĞLU, Ahmet M.</creatorcontrib><creatorcontrib>VAUGHAN, Robert C.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal de theorie des nombres de bordeaux</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BANKS, William D.</au><au>GÜLOĞLU, Ahmet M.</au><au>VAUGHAN, Robert C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Waring's problem for Beatty sequences and a local to global principle</atitle><jtitle>Journal de theorie des nombres de bordeaux</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>26</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1246-7405</issn><eissn>2118-8572</eissn><abstract>Nous examinons de façons diverses la représentation d'un grand nombre entier N comme somme de s entiers positifs qui sont tous des puissances k-ième de termes d'une suite de Beatty donnée. Entre autres, une forme très générale du principe local-global est établie dans la théorie additive des nombres. La démonstration est courte mais elle utilise un théorème profond de M. Kneser. We investigate in various ways the representation of a large natural number N as a sum of s positive k-th powers of numbers from a fixed Beatty sequence. Inter alia, a very general form of the local to global principle is established in additive number theory. Although the proof is very short, it depends on a deep theorem of M. Kneser.</abstract><pub>Institut de mathématiques de Bordeaux</pub><doi>10.5802/jtnb.855</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1246-7405 |
ispartof | Journal de theorie des nombres de bordeaux, 2014-01, Vol.26 (1), p.1-16 |
issn | 1246-7405 2118-8572 |
language | eng |
recordid | cdi_crossref_primary_10_5802_jtnb_855 |
source | Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; NUMDAM; JSTOR Mathematics & Statistics |
subjects | College mathematics Integers Mathematical congruence Mathematical sequences Mathematical theorems Natural numbers Number theory Real numbers |
title | Waring's problem for Beatty sequences and a local to global principle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Waring's%20problem%20for%20Beatty%20sequences%20and%20a%20local%20to%20global%20principle&rft.jtitle=Journal%20de%20theorie%20des%20nombres%20de%20bordeaux&rft.au=BANKS,%20William%20D.&rft.date=2014-01-01&rft.volume=26&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1246-7405&rft.eissn=2118-8572&rft_id=info:doi/10.5802/jtnb.855&rft_dat=%3Cjstor_cross%3E43973174%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43973174&rfr_iscdi=true |