Extremal Sidon Sets are Fourier Uniform, with Applications to Partition Regularity
En généralisant des résultats d’Erdos–Freud et Lindström, nous prouvons que le plus grand sous-ensemble de Sidon d’un intervalle d’entiers borné est équidistribué dans des voisinages de Bohr. Nous le faisons en montrant que les ensembles de Sidon extrémaux sont Fourier-pseudo-aléatoires, dans le sen...
Gespeichert in:
Veröffentlicht in: | Journal de theorie des nombres de bordeaux 2023-01, Vol.35 (1), p.115-134 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | En généralisant des résultats d’Erdos–Freud et Lindström, nous prouvons que le plus grand sous-ensemble de Sidon d’un intervalle d’entiers borné est équidistribué dans des voisinages de Bohr. Nous le faisons en montrant que les ensembles de Sidon extrémaux sont Fourier-pseudo-aléatoires, dans le sens qu’ils n’ont pas de coefficients de Fourier grands non triviaux. Comme application, nous en déduisons que pour une equation régulière à cinq variables et plus, toute coloration finie d’un ensemble extrémal de Sidon a une solution monochromatique.
Generalising results of Erdos–Freud and Lindström, we prove that the largest Sidon subset of a bounded interval of integers is equidistributed in Bohr neighbourhoods. We establish this by showing that extremal Sidon sets are Fourier-pseudorandom, in that they have no large non-trivial Fourier coefficients. As a further application we deduce that, for any partition regular equation in five or more variables, every finite colouring of an extremal Sidon set has a monochromatic solution. |
---|---|
ISSN: | 1246-7405 2118-8572 2118-8572 |
DOI: | 10.5802/jtnb.1239 |