UBIQUITY OF CONICAL POINTS IN TOPOLOGICAL INSULATORS

We show that generically, the degeneracies of a family of Hermitian matrices depending on three parameters have a conical structure. Our result applies to the study of topological phases of matter. It suggests that adiabatic deformations of two-dimensional topological insulators come generically wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal de l'École polytechnique. Mathématiques 2021-01, Vol.8, p.507-532
1. Verfasser: Drouot, Alexis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that generically, the degeneracies of a family of Hermitian matrices depending on three parameters have a conical structure. Our result applies to the study of topological phases of matter. It suggests that adiabatic deformations of two-dimensional topological insulators come generically with Dirac-like propagating currents, whose total conductivity equals the chiral number of conical points.
ISSN:2429-7100
2270-518X
2270-518X
DOI:10.5802/jep.152