UBIQUITY OF CONICAL POINTS IN TOPOLOGICAL INSULATORS
We show that generically, the degeneracies of a family of Hermitian matrices depending on three parameters have a conical structure. Our result applies to the study of topological phases of matter. It suggests that adiabatic deformations of two-dimensional topological insulators come generically wit...
Gespeichert in:
Veröffentlicht in: | Journal de l'École polytechnique. Mathématiques 2021-01, Vol.8, p.507-532 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that generically, the degeneracies of a family of Hermitian matrices depending on three parameters have a conical structure. Our result applies to the study of topological phases of matter. It suggests that adiabatic deformations of two-dimensional topological insulators come generically with Dirac-like propagating currents, whose total conductivity equals the chiral number of conical points. |
---|---|
ISSN: | 2429-7100 2270-518X 2270-518X |
DOI: | 10.5802/jep.152 |