Semigroups in which the radical of every interior ideal is a subsemigroup

In this paper, we characterize when the radical $\sqrt{I}$ of every interior ideal $I$ of a semigroup $S$ is a subsemigroup of $S$. Also, the radical of every interior ideal (or right ideal or left ideal or quasi-ideal or ideal or bi-ideal or subsemigroup) of $S$ is an interior ideal (or a right ide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quasigroups and related systems 2023-07, Vol.31 (1(49)), p.65-74
Hauptverfasser: Jantanan, Wichayaporn, Jumnongphan, Chinnawat, Jaichot, Natthawut, Chinram, Ronnason
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we characterize when the radical $\sqrt{I}$ of every interior ideal $I$ of a semigroup $S$ is a subsemigroup of $S$. Also, the radical of every interior ideal (or right ideal or left ideal or quasi-ideal or ideal or bi-ideal or subsemigroup) of $S$ is an interior ideal (or a right ideal or a left ideal or a quasi-ideal or an ideal or a bi-ideal) of $S$.
ISSN:1561-2848
DOI:10.56415/qrs.v31.05