Semigroups in which the radical of every interior ideal is a subsemigroup
In this paper, we characterize when the radical $\sqrt{I}$ of every interior ideal $I$ of a semigroup $S$ is a subsemigroup of $S$. Also, the radical of every interior ideal (or right ideal or left ideal or quasi-ideal or ideal or bi-ideal or subsemigroup) of $S$ is an interior ideal (or a right ide...
Gespeichert in:
Veröffentlicht in: | Quasigroups and related systems 2023-07, Vol.31 (1(49)), p.65-74 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we characterize when the radical $\sqrt{I}$ of every interior ideal $I$ of a semigroup $S$ is a subsemigroup of $S$. Also, the radical of every interior ideal (or right ideal or left ideal or quasi-ideal or ideal or bi-ideal or subsemigroup) of $S$ is an interior ideal (or a right ideal or a left ideal or a quasi-ideal or an ideal or a bi-ideal) of $S$. |
---|---|
ISSN: | 1561-2848 |
DOI: | 10.56415/qrs.v31.05 |