Influence of hard segments content on thermal, morphological and mechanical properties of homo and co-polyurethanes: a comparative study
Purpose: This work aims to study the effect of hard segments (HS) content on the thermal, morphological and mechanical properties of polyurethane polymers based on 1.5 pentanediol chain extenders. Design/methodology/approach: Two comparable series of polyurethanes were synthesised including homo-pol...
Gespeichert in:
Veröffentlicht in: | Archives of materials science and engineering 2021-05, Vol.1 (109), p.5-16 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose: This work aims to study the effect of hard segments (HS) content on the thermal, morphological and mechanical properties of polyurethane polymers based on 1.5 pentanediol chain extenders. Design/methodology/approach: Two comparable series of polyurethanes were synthesised including homo-polyurethane (Homo-PU) and copolyurethane (Co-PU). The Homo-PU consists of 100% wt. of hard segments (HS). The Co-PU composes of 30%wt. of soft segments (SS) using a poly(ethylene glycol)-block-poly(propylene glycol)-blockpoly( ethylene glycol) material. The effect of hard segments content on the morphology of Homo-PU and Co-PU was also studied. Findings: The Homo-PU and Co-PU materials show three distinct degradation steps with the higher thermal stability of the Co-PU compared to the Homo-PU. Enthalpy of fusion (ΔHM) and heat capacity (ΔCP) of polyurethane (PU) samples decrease with decreasing HS content. In the cooling cycle, the higher exothermic peak of crystallization is observed in the Co-PU. In contrast, the cold crystalline peak is observed in the 2nd heating cycle of the Homo-PU. Melting temperature (TM) increases with increasing SS content. Glass transition temperature (Tg) of PU samples shifts to higher temperature with increasing HS content. Storage modulus (E’) of the Co-PU is higher than E’ of the Homo-PU. All N-H groups in PU samples are hydrogen-bonded, whilst most of the C=O groups are hydrogen-bonded. The degree of hydrogen bonding in PU samples decreases with decreasing HS content. The Homo-PU shows better hardness than the Co-PU and higher brittleness at low temperature. WAXS results of the Homo-PU display better crystallinity compared to the Co-PU. Research limitations/implications: The main challenge in this work was how to synthesis Thermoplastic polyurethanes (TPUs) with specific properties to compete other common polymer such as Polyamides (PA) and Polypropylene (PP).Practical implications: Thermoplastic polyurethanes (TPUs) can be used in various application such as backageing, foot,automobiles and constructions. Originality/value: A new type of TPUs that synthesized using different type of chain extender (1.5 pentanediol). Two different types of TPUs were synthesized one contained 30% SS and 70% HS and a second one contained 100% HS. |
---|---|
ISSN: | 1897-2764 |
DOI: | 10.5604/01.3001.0015.0510 |