The character of the structure formation of model alloys of the Fe-Cr-(Zr, Zr-B) system synthesized by powder metallurgy

Purpose: The purpose of the work is to synthesize and investigate the character of structure formation, phase composition and properties of model alloys Fe75Cr25, Fe70Cr25Zr5, and Fe69Cr25Zr5B1. Design/methodology/approach: Model alloys are created using traditional powder metallurgy approaches. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of achievements in materials and manufacturing engineering 2020-06, Vol.2 (100), p.49-57
Hauptverfasser: Duriagina, Z.A., Romanyshyn, M.R., Kulyk, V.V., Kovbasiuk, T.M., Trostianchyn, A.M., Lemishka, I.A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: The purpose of the work is to synthesize and investigate the character of structure formation, phase composition and properties of model alloys Fe75Cr25, Fe70Cr25Zr5, and Fe69Cr25Zr5B1. Design/methodology/approach: Model alloys are created using traditional powder metallurgy approaches. The sintering process was carried out in an electric arc furnace with a tungsten cathode in a purified argon atmosphere under a pressure of 6·104 Pa on a water cooled copper anode. Annealing of sintered alloys was carried out at a temperature of 800°C for 3 h in an electrocorundum tube. The XRD analysis was performed on diffractometers DRON-3.0M and DRON-4.0M. Microstructure study and phase identification were performed on a REMMA-102-02 scanning electron microscope. The microhardness was measured on a PMT-3M microhardness meter. Findings: When alloying a model alloy of the Fe-Cr system with zirconium in an amount of up to 5%, it is possible to obtain a microstructure of a composite type consisting of a mechanical mixture of a basic Fe2(Cr) solid solution, solid solutions based on Laves phases and dispersive precipitates of these phases of Fe2Zr and FeCrZr compositions. In alloys of such systems or in coatings formed based on such systems, an increase in hardness and wear resistance and creep resistance at a temperature about 800°C will be reached. Research limitations/implications: The obtained results were verified during laser doping with powder mixtures of appropriate composition on stainless steels of ferrite and ferrite-martensitic classes. Practical implications: The character of the structure formation of model alloys and the determined phase transformations in the Fe-Cr, Fe-Cr-Zr, and Fe-Cr-B-Zr systems can be used to improve the chemical composition of alloying plasters during the formation of ferrite and ferrite-martensitic stainless steel coatings. Originality/value: The model alloys were synthesized and their phase composition and microstructure were studied; also, their microhardness was measured. The influence of the chemical composition of the studied materials on the character of structure formation and their properties was analysed.
ISSN:1734-8412
DOI:10.5604/01.3001.0014.3344