Relationships between the fatigue crack growth resistance characteristics of a steel and the tread surface damage of railway wheel

Purpose: The aim of the proposed research is to establish experimentally the relation between damaging of the tread surface of model wheels and the characteristics of fatigue crack growth resistance of wheel steels "KI th, "KII th, "KI fc, "KII fc), depending on its microstructur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of materials science and engineering 2018-04, Vol.2 (90), p.49-55
Hauptverfasser: Ostash, O.P., Kulyk, V.V., Lenkovskiy, T.M., Duriagina, Z.A., Vira, V.V., Tepla, T.L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: The aim of the proposed research is to establish experimentally the relation between damaging of the tread surface of model wheels and the characteristics of fatigue crack growth resistance of wheel steels "KI th, "KII th, "KI fc, "KII fc), depending on its microstructure. Design/methodology/approach: Characteristics of the fatigue crack growth resistance have been determined on the specimens cut out from the hot rolled plate of thickness 10 mm of the steel which is an analogue of railway wheel steels. To obtain different steel microstructures and its strength level, test specimens were quenched (820°C, in oil) and then tempered at 400°C, 500°C, and 600°C for 2 h. The characteristics of Mode I fatigue crack growth resistance of steel were determined on the basis of fatigue macrocrack growth rate diagrams da/dN–"KI, obtained by the standard method on compact specimens with the thickness of 10 mm at a frequency of 10-15 Hz and the stress ratio R = 0.1 of the loading cycle. The characteristics of Mode II fatigue crack growth resistance were determined on the basis of da/dN–"KII diagrams, obtained by authors method on edge notched specimens with the thickness 3.2 mm at a frequency of 10-15 Hz and R = –1 taking account of the crack face friction. The hardness was measured with a TK-2 hardness meter. Zeiss-EVO40XVP scanning electron microscope was used for microstructural investigations. Rolling contact fatigue testing was carried out on the model specimens of a wheel of thickness 8 mm and diameter 40 mm in contact with a rail of length 220 mm, width 8 mm and height 16 mm. Wheels were manufactured form the above-described steel after different treatment modes. Rails were cut out from a head the full-scale rail of hardness 46 HRC. The damaging was assessed by a ratio of the area with gaps formed by pitting and spalling to the general area of the wheel tread surface using a special stand. Findings: The growth of the damage of the tread surface of the model wheels correlates uniquely with the decrease of the cyclic fracture toughness of the wheel steel "KI fc and "KII fc, determined at Mode I and Mode II fracture mechanisms. These characteristics of the wheel steel can be considered as the determining parameter of this process, in contrast to the fatigue thresholds "KI th and "KII th. Research limitations/implications: Investigations were conducted on model wheels that simulate the damage of real railway wheels tread surface. Practical implications: A rela
ISSN:1897-2764
DOI:10.5604/01.3001.0012.0662