DESIGN OF HELICAL TYPE STEAM GENERATOR FOR EXPERIMENTAL POWER REACTOR

Reaktor Daya Eksperimental (RDE) is a high-temperature gas-cooled reactor (HTGR) for electricity generation, heat generation, and hydrogen production by Batan. Empirical and numerical calculations are needed to strengthen the existing design. The numerical method by computational fluid dynamic (CFD)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Jurnal teknologi reaktor nukir Tri Dasa Mega 2023-03, Vol.25 (1), p.1
Hauptverfasser: Putri, Sunny Ineza, Darmanto, Prihadi Setyo, Subekti, Raden Mohammad
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reaktor Daya Eksperimental (RDE) is a high-temperature gas-cooled reactor (HTGR) for electricity generation, heat generation, and hydrogen production by Batan. Empirical and numerical calculations are needed to strengthen the existing design. The numerical method by computational fluid dynamic (CFD) analyzes temperature distribution and pressure drop along the pipe. The Batan RDE steam generator design has a seven-layer helical pipe model, while this research uses a one-layer helix pipe. In empirical calculations, the heat transfer region has three sections; single-phase liquid, two-phase, and single-phase vapor heat transfer. In numerical calculations, apply the assumption of constant heat flux and constant working fluid properties. The results of empiric calculations data showed that the helical pipe height was 3.98 m, shorter than the Batan design, which is 4.97 m. This considerable difference due to empirical calculations did not cover the safety factor. The results of numerical calculations show that in the single-phase, empiric calculation data were acceptable since the different values of numerical calculations for empiric calculations data were below 10%. Meanwhile, the case of the two-phase numerical calculations is not satisfactory and needs further research to obtain optimal results.
ISSN:1411-240X
2527-9963
DOI:10.55981/tdm.2023.6656