Estimation of kinematic and stress history by composite planar fabric and stress inversion analysis: Application to the Shionohira and Kuruma faults
Shear planes are formed in various orientations within fault fracture zones. The sense of shear on each shear plane can be determined from the composite planar fabrics developed around it. However, it is not possible to distinguish whether all the shear planes in a fault fracture zone were formed du...
Gespeichert in:
Veröffentlicht in: | Chishitsugaku zasshi 2024, Vol.130(1), pp.89-109 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Shear planes are formed in various orientations within fault fracture zones. The sense of shear on each shear plane can be determined from the composite planar fabrics developed around it. However, it is not possible to distinguish whether all the shear planes in a fault fracture zone were formed during the same stage of motion by observations alone, because of the scarcity of chronological data. As such, we attempted to determine the kinematic and stress histories of the Shionohira and Kuruma faults by using both observations of composite planar fabrics and stress inversion analysis. As a result, we identified five stages of motion on the Shionohira Fault and two stages of motion on the Kuruma Fault. The chronological data are not sufficient to constrain the timing of the stages, but the reconstructed histories are consistent with the paleostress fields and tectonic activity around these faults, as determined in previous studies. Although the reconstructed stress history depends on the density of fault-slip data from the measurement area, this method is effective for investigating the formation mechanisms of fault fracture zones. |
---|---|
ISSN: | 0016-7630 1349-9963 |
DOI: | 10.5575/geosoc.2024.0001 |