Reverse Faber-Krahn inequality for a truncated Laplacian operator
In this paper we prove a reverse Faber–Krahn inequality for the principal eigenvalue µ1(Ω) of the fully nonlinear eigenvalue problem (−λN (D2u) = µu in Ω,u = 0 on ∂Ω.Here λN (D2u) stands for the largest eigenvalue of the Hessian matrix of u. More precisely, we prove that, for an open, bounded, conve...
Gespeichert in:
Veröffentlicht in: | Publicacions Matemàtiques 2022-01, Vol.66 (2), p.441-455 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we prove a reverse Faber–Krahn inequality for the principal eigenvalue µ1(Ω) of the fully nonlinear eigenvalue problem (−λN (D2u) = µu in Ω,u = 0 on ∂Ω.Here λN (D2u) stands for the largest eigenvalue of the Hessian matrix of u. More precisely, we prove that, for an open, bounded, convex domain Ω ⊂ RN , the inequality µ1(Ω) ≤π2[diam(Ω)]2= µ1(Bdiam(Ω)/2), where diam(Ω) is the diameter of Ω, holds true. The inequality actually implies a stronger result, namely, the maximality of the ball under a diameter constraint. Furthermore, we discuss the minimization of µ1(Ω) under different kinds of constraints. |
---|---|
ISSN: | 2014-4350 0214-1493 |
DOI: | 10.5565/PUBLMAT6622201 |