New eigenvalue estimates involving Bessel functions

Given a compact Riemannian manifold (M n , g) with boundary ∂M , we give an estimate for the quotient ∂M f dµ g M f dµ g , where f is a smooth positive function defined on M that satisfies some inequality involving the scalar Laplacian. By the mean value lemma established in [37], we provide a diffe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publicacions Matemàtiques 2021, Vol.65 (2), p.681-726
Hauptverfasser: El Chami, Fida, Ginoux, Nicolas, Habib, Georges
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a compact Riemannian manifold (M n , g) with boundary ∂M , we give an estimate for the quotient ∂M f dµ g M f dµ g , where f is a smooth positive function defined on M that satisfies some inequality involving the scalar Laplacian. By the mean value lemma established in [37], we provide a differential inequality for f which, under some curvature assumptions, can be interpreted in terms of Bessel functions. As an application of our main result, a direct proof is given of the Faber-Krahn inequalities for Dirichlet and Robin Laplacian. Also, a new estimate is established for the eigenvalues of the Dirac operator that involves a positive root of Bessel function besides the scalar curvature. Independently, we extend the Robin Laplacian on functions to differential forms. We prove that this natural extension defines a self-adjoint and elliptic operator whose spectrum is discrete and consists of positive real eigenvalues. In particular, we characterize its first eigenvalue and provide a lower bound of it in terms of Bessel functions.
ISSN:0214-1493
DOI:10.5565/PUBLMAT6522109