Lower central words in finite p-groups
It is well known that the set of values of a lower central word in a group G need not be a subgroup. For a fixed lower central word γr and for p ≥ 5, Guralnick showed that if G is a finite p-group such that the verbal subgroup γr(G) is abelian and 2-generator, then γr(G) consists only of γr-values....
Gespeichert in:
Veröffentlicht in: | Publicacions matemàtiques 2021-01, Vol.65 (1), p.243-269 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is well known that the set of values of a lower central word in a group G need not be a subgroup. For a fixed lower central word γr and for p ≥ 5, Guralnick showed that if G is a finite p-group such that the verbal subgroup γr(G) is abelian and 2-generator, then γr(G) consists only of γr-values. In this paper we extend this result, showing that the assumption that γr(G) is abelian can be dropped. Moreover, we show that the result remains true even if p= 3. Finally, we prove that the analogous result for pro-p groups is true. |
---|---|
ISSN: | 2014-4350 0214-1493 |
DOI: | 10.5565/PUBLMAT6512107 |