On FGDF-modules
Let R be a unital ring and M a unitary module not necessary over R. The FGDF-module is a generalization of FGDF-rings (Touré, Diop, Mohamed and Sangharé, 2014). In this work, we first give some properties of FGDF-modules. After that, we show that for a finitely generated module M, M is a FGDF-module...
Gespeichert in:
Veröffentlicht in: | Journal of mathematics research 2017-07, Vol.9 (4), p.196 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let R be a unital ring and M a unitary module not necessary over R. The FGDF-module is a generalization of FGDF-rings (Touré, Diop, Mohamed and Sangharé, 2014). In this work, we first give some properties of FGDF-modules. After that, we show that for a finitely generated module M, M is a FGDF-module if and only if M is of finite representation type module. Finally, we show that M is a finitely generated FGDF-module if and only if every Dedekind finite module of $\sigma[M]$ is noetherian. |
---|---|
ISSN: | 1916-9795 1916-9809 |
DOI: | 10.5539/jmr.v9n4p196 |