Improving Complementarity Effect of Legume Intercrop by Earthworm Facilitation for Wheat Performance

Intercrops and crop mixtures are considered to be a way to increase nitrogen use efficiency by promoting niche complementarity and facilitation, reducing the input of fertilizers and herbicides, which are important factors when considering the effects of climate change. However, interactions between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural science (Toronto) 2018-11, Vol.10 (12), p.1
Hauptverfasser: Drut, Baptiste, Cassagne, Nathalie, Cannavacciuolo, Mario, Floch, Gaëtan Le, Cobo-Díaz, José F., Fustec, Joëlle
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intercrops and crop mixtures are considered to be a way to increase nitrogen use efficiency by promoting niche complementarity and facilitation, reducing the input of fertilizers and herbicides, which are important factors when considering the effects of climate change. However, interactions between crop communities and soil functional diversity also have major effects on crop cover function. Our study aimed to investigate the simultaneous effects of plant composition and presence of earthworms on the growth (roots and shoots) of wheat (Triticum aestivum L.). Mesocosms filled with soil were sown with either 6 wheat plants of the same cultivar, or 6 plants of 3 different wheat cultivars, or 3 wheat plants of 3 different cultivars with 3 clover plants (Trifolium hybridum L.). A part of the mesocosms was inoculated with either endogeic earthworms (Aporrectodea caliginosa S.) or a mixture of endogeic and anecic earthworms (Lumbricus terrestris S.). A relative interaction index was calculated to highlight competition strength between plants with or without earthworms. The presence of different cultivars had no influence on wheat performance, but with clover, plant competition decreased to the benefit of wheat biomass and N accumulation. Earthworms also reduced the competitive strength between wheat plants in mixed-cultivar mesocosms and in intercropping. In intercrops with clover, wheat performance was improved as a result of niche complementarity and earthworm facilitation for N resource. Our results suggest that the plant functional group, such as legumes, and earthworm communities work synergistically to improve wheat yields.
ISSN:1916-9752
1916-9760
DOI:10.5539/jas.v10n12p1