The Tesla Currents in Electrodynamics
The paper theoretically shows that the Maxwell equations in the Lorentz gauge deal with not only inertial charged particles, but also charged particles that do not have inertia (virtual charges). Virtual charges appear on the surface of metals. Their movement is the currents of Tesla. Experiments co...
Gespeichert in:
Veröffentlicht in: | Applied physics research 2018-09, Vol.10 (5), p.79 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper theoretically shows that the Maxwell equations in the Lorentz gauge deal with not only inertial charged particles, but also charged particles that do not have inertia (virtual charges). Virtual charges appear on the surface of metals. Their movement is the currents of Tesla. Experiments confirming their existence are presented, and some features that reveal them. The influence of virtual currents on the process of transfer of conduction electrons in p-n junctions of semiconductor devices is especially interesting. The results obtained can change our understanding of phenomena in the microcosm. |
---|---|
ISSN: | 1916-9639 1916-9647 |
DOI: | 10.5539/apr.v10n5p79 |